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Project Overview 

 Project Participants 
 
 
 
 

 

 
 

 

 DOE Project Manager: Andrew Jones 

 Project Number: DE-FE0007741 

 Total Project Budget: $2,088,643 

 Project Duration: Oct. 1,2011 – Dec. 31, 2014 

 

Enzymes & Solvents Kinetics & Bench-scale Tests Ultrasonics & Aspen®  Full Process Analysis 

DOE Program Objectives 
Develop solvent-based, 
post-combustion technology 
that 

• Can achieve ≥ 90% 
CO2 removal from coal-
fired power plants 
• Demonstrates progress 
toward the DOE target of 
<35% increase in LCOE. 

4 



Project Objective 

Complete a bench-scale study and corresponding full technology 
assessment to validate the potential in meeting the DOE Program 
Objectives of a solvent-based post-combustion carbon dioxide capture 
system that integrates  

 a low-enthalpy, aqueous 
potassium carbonate-based solvent  
 

 with an absorption-enhancing 
carbonic anhydrase enzyme catalyst 
 

 and a flow through ultrasonic-
enhanced regenerator  
 

 in a re-circulating absorption-
desorption process configuration 

CO2 + H2O + K2CO3 ↔ 2KHCO3  
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Process Concept 

 Advantages 

Low enthalpy, benign solvent  
(catalyzed aq. 20% K2CO3) 

 K2CO3 ∆Hrxn 27 kJ/mol CO2 

 MEA ∆Hrxn 83 kJ/mol CO2 

Potential for ~50% regeneration 
energy vs. MEA 
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 Challenges 

Demonstrate atmospheric regeneration 
at 70°C enabled by ultrasonics 

Demonstrate overall techno-economic 
feasibility 

  energy demand 

  enzyme requirement 

Absorption 
30-50°C 

Regeneration 
~70°C 
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Laboratory Validations – Part 1 

 Ultrasonic Unit Batch Testing 

 Demonstrated CO2 release via ultrasonic energy addition  

 1/3rd of target defined by ASPEN®-predicted vacuum 

 Established preliminary settings for ultrasonic power, frequency, 
exposure times, and need for continuous bubble removal  
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Ultrasonics Regeneration Mechanism 

 Create a population of seed bubbles above a critical radius via 
ultrasonic cavitation in the liquid 

 Bubbles expand and shrink in an ultrasonic field 

o Expanding bubbles = lower pressure/ higher surface area   

o Shrinking bubbles = higher pressure/ lower surface area 

 Rectified diffusion results when expanding bubbles allow for a biased 
transfer of dissolved gas into the bubble from solution   

o Frequency optimization likely required due to its impact on the threshold pressure, 
and bubble growth 

 Remove bubbles grown via rectified diffusion before they can 
dissolve back into the liquid  
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PNNL Lab Ultrasonic Desorption System Schematic 

Video Camera Back Light

Solvent 
Solution

Circulation 
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Circulation
Pump

Profile TC
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System allows for introducing 

ultrasonic power while 

maintaining temperature to 

within 2oC. 
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PNNL’s Batch Lab Ultrasonic Desorption System 

Vessel 

Ultrasonic Horn 
(inverted horn 
configuration) 

Solvent 
Recirculation 

Lines 

Temperature 
Controlled 

Bath 

Gas Exit w/ 
Condenser 

 Bubbles expand and shrink 
in an ultrasonic field 

 Rectified diffusion results 
when expanding bubbles 
allow for a biased transfer of 
dissolved gas into the 
bubble from solution   

 Remove bubbles before they 
can dissolve back into the 
liquid  
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Photographs of Ultrasonic Desorption 

Pure Water at 70oC                    
– With Sonication   

Loaded Solvent at 70oC           
– No Sonication   

Loaded Solvent at 70oC                    
– With Sonication   

Significant agitation/ bubbling observed when 
ultrasonic power added to CO2 loaded 20% 

K2CO3 solution at 70oC  
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Batch Test Results for Ultrasonic Regeneration  

Testing with 20 wt% K2CO3 solvent loaded to 4.6 wt% CO2 

ASPEN (equilibrium) projections of CO2 release at 6 psia = 0.96% 

Total CO2 release observed = 0.67% (0.25% from ultrasonic effect) 

Likely impacted by re-dissolution of CO2 

Slow CO2 release rates observed 

Further evaluation needed 
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Energy Projections for Ultrasonic Regeneration 

Commercial water sterilization = 0.24 to 0.79 kJe/ kg of water  

 Based on developed applications for ship ballast treatment [1] 

 

Initial batch testing for CO2 regeneration = 4.9 kJe/ kg of solvent 

 Laboratory horn used.  Poor CO2 removal (significant re-dissolution)  

 Demonstrated value = 10.3 kJe /mol of CO2, 0.021 kg of CO2 removal 
per kg of recirculated solvent recirculation assumed. 

 

Full-scale CO2 regeneration system estimate = 1.5 kJe/ kg of solvent 

 Based on (conservative) tube sonication configuration 

 Equates to just over 11 MWe of parasitic power for the ultrasonic 
system in the 500 MWe reference system 

 

 

 

[1]  "Ballast water treatment technology, Current status," February 2010 
(http://www.lr.org/Images/BWT0210_tcm155-175072.pdf) 
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Laboratory Validations – Part 2 

 Ultrasonic Unit Batch Testing 

 Demonstrated CO2 release via ultrasonic energy addition  

 1/3rd of target defined by ASPEN®-predicted vacuum 

 Established preliminary settings for ultrasonic power, frequency, 
exposure times, and need for continuous bubble removal  

 Enzyme-Solvent Compatibility 

 Lab results show robustness to simulated process pH, ultrasonics, 
and absorber temp. with (manageable) losses at increased temp. 
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Producing Enzymes for Industrial Applications 

RAW MATERIALS 

FERMENTATION 

MICRO- 
ORGANISMS 

PURIFICATION 

FORMULATION 

MICROORGANISMS  
TO BE INACTIVATED 

ENZYMES 

1. Improving the production host 
Improving the microorganisms’ 
ability to produce more enzymes 
per m3 fermentation tank through 
genetic engineering 

2. Optimizing the industrial 
production Traditional 
production optimization 
• Process optimization 
• Equipment optimization 
• Input optimization 

3. Improving the enzyme produced 
Improving the efficacy of the enzymes through protein 
engineering to meet application conditions and process 
economy requirements 

www.novozymes.com 
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Carbonic anhydrase catalyzes (increases kinetic rates) the hydration of CO2 
and dehydration of bicarbonate resulting in enhanced absorption and 
desorption of CO2 into and out of a CO2 absorber solvent. 

Zinc-hydroxide 
mechanism at 
the enzyme’s 
catalytic active 
site 

Reaction goes 
forward at higher pH 

(pH drops as H+ is 
produced) 

High H2O 
solubility 

Low H2O 
solubility 
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Enzyme Compatibility with Ultrasonic Treatment 

Indicator color changes due to pH 
decrease when CO2 is hydrated to 

bicarbonate 

CA 

Substrate: CO2 

saturated water 

No Enzyme (assay 
buffer only) 

With Enzyme (after 
ultrasonic treatment) 

time 

Indicator: blue 

Indicator: yellow 

 Enzyme tolerates initial ultrasonic tests with no apparent loss of activity 
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Enzyme-solvent Compatibility   

 Demonstrates high 
robustness in working 
solvent at 40°C 

 Demonstrates limited 
(but nevertheless 
useful) robustness at 
70°C 

 Data used for initial 
estimation of solvent 
replenishment rate in 
prefeasibility 

 

Solvent: aq. 22% K2CO3/KHCO3 with 3 g/L enzyme and 
adjusted to lean pH 
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Laboratory Validations – Part 3 

 Ultrasonic Unit Batch Testing 

 Demonstrated CO2 release via ultrasonic energy addition  

 1/3rd of target defined by ASPEN®-predicted vacuum 

 Established preliminary settings for ultrasonic power, frequency, 
exposure times, and need for continuous bubble removal  

 Enzyme-Solvent Compatibility 

 Lab results show robustness to simulated process pH, ultrasonics, 
and absorber temp. with (manageable) losses at increased temp. 

 Absorption Kinetics 

 Temperature had minimal impact on mass transfer over the 
absorber temperature range studied 

 Initial enzyme loading for process established 
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UK-CAER Wetted Wall Column Schematic 

Measures gas to liquid flux 
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UK-CAER Mass Transfer Results 

 Solvent: aq. 20% K2CO3 + carbonic anhydrase 
 Temperature had minimal impact on mass transfer over 
the absorber temperature range studied 
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UK-CAER Mass Transfer Results 

 Solvent: aq. 20% K2CO3 + carbonic anhydrase 
 Achieved Initial Milestone Enzyme-catalyzed Solvent 
Kinetics (Mass Transfer) 
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Laboratory Validations - Summary 

 Ultrasonic Unit Batch Testing 

 Demonstrated CO2 release via ultrasonic energy addition  

 1/3rd of target defined by ASPEN®-predicted vacuum 

 Established preliminary settings for ultrasonic power, frequency, 
exposure times, and need for continuous bubble removal  

 Enzyme-Solvent Compatibility 

 Lab results show robustness to simulated process pH, ultrasonics, 
and absorber temp. with (manageable) losses at increased temp 

 Absorption Kinetics 

 Temperature had minimal impact on mass transfer over the 
absorber temperature range studied 

 Initial enzyme loading for process established 
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 Lab results were provided for prefeasibility study 



Preliminary Technical and Economic Feasibility 

 Overall CO2 Capture Reaction 

   CO2 + H2O + K2CO3   ↔   2KHCO3  

 Aspen Plus® (with Radfrac) used for Process modeling for absorption 

 AspenTech’s Capital Cost Estimator® along with budget supplier quotations 
used for Cost Estimation of the PCC Components 

 Preliminary techno-economic feasibility and sensitivity studies performed 
based on the fixed coal feed rate as per Case 10 (MEA-based) for the 
enzyme enhanced K2CO3 solvent. 

 Four methodologies of regeneration have been investigated: 

 Case 1: Vacuum Stripping using LP steam 

 Case 2: Vacuum Stripping using VLP steam 

 Case 3: Ultrasonic regeneration using electrical energy 

 Case 4: Ultrasonic regeneration using VLP steam 

 

 

CA Enzyme 
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Conclusions and Recommendations 

 Preliminary techno-economic evaluation has been completed for the process 
integrated with a subcritical coal-fired power plant indicating net efficiency 
improvement of 25% versus Case 10. 

 Net Plant Efficiency (on HHV basis) and LCOE ($/MWhe): 

 

 

 

 
 

 

 

 

 

 

 Challenges that will be investigated in the next phases of the project are:  

 Validation and optimization of the performance, design of the ultrasonic regeneration 

 Reduction in dosing quantity of the enzyme 

 Further investigation of the option to utilize a VLP for solvent regeneration 

 Utilization of alternative materials of construction to reduce the capital cost of plant 

Net efficiency LCOE ($/MWhe) 

Case 10 24.9% 119.6 

Power Equivalent of 
0.0911 Kwh/lb of 
steam 

Vacuum Regeneration 24.34% – 29.97% 112.92 – 125.23 

Ultrasonic Regeneration 26.63% – 31.41% 108.90 – 117.50 

Power Equivalent of 
0.0665 Kwh/lb of 
steam 

Vacuum Regeneration 24.07% - 27.75% 117.56 – 126.06 

Ultrasonic Regeneration 24.41% - 29.19% 113.02 – 123.29 
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Project Schedule – Next Steps 

 Task 1 – Project Management and Planning 

 Task 2 – Process optimization 

 Ultrasonic Unit Optimization 

 Solvent & Enzyme-Solvent Compatibility Optimization 

 Solvent Physical Properties & Kinetic Measurements 

 Design Integrated Bench-Scale System 

 Task 3 – Initial Technical & Economic Feasibility  
 

 Task 4 – Bench Unit Procurement & Fabrication 

 Task 5 – Unit Operations Shakedown Testing & Integration 

 Task 6 – Bench-scale Testing 

 Task 7 – Full Technology Assessment 

 
 
 
 
 
 
BP1 
09/2012 

 
BP2 
09/2013 

 
BP3 
12/2014 
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